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Abstract 

In this exploratory paper we use social network analysis to reveal a 
number of structural aspects of the actor networks that have devel-
oped during two recent European policy conflicts about intellectual 
property rights. Using statistical indicators we can identify distinctive 
relational patterns for different actor types. Using exponential ran-
dom graph models we demonstrate how the two actor networks dif-
fered in their overall structure of interaction. 

Introduction 

The conflict about software patents in the EU has been one of the most intense policy con-
flicts in Europe in the last decade. This was quite surprising as before the conflict software 
patents have been perceived as an arcane area of patent law that attracted the attention of only 
a small group of specialist lawyers. The conflict was characterized by the mobilization of col-
lective action networks that involved actors that are usually regarded as weak or hard to mobi-
lize: Public interest groups and small and medium-sized enterprises (Olson, 1968; Schmitter 
and Streeck, 1999; Smith, 2008). Unexpectedly these actors were quite successful in the con-
flict and, in the end, prevented the adoption of the directive. 

About the same time a second IP conflict developed around the proposed EU directive on the 
enforcement of intellectual property rights. This time, the actor network was dominated by a 
more traditional player: business associations and single large firms. But again, a network of 
civil society organizations tried to influence the decision-making process and to prohibit the 
directive – this time, without much success. 

The fact that both conflicts happened at roughly the same time in the same institutional 
framework and in the same policy field, included an important set of overlapping actors, but 
led to opposing policy outcomes, allows us to isolate the factors that determined success or 
failure of the respective actors. In this paper, we focus mainly on the structural aspects of the 
actor networks that developed during these conflicts. 
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A Brief History of the Two Conflicts  

Both conflicts started in the late 1990s with the publication of a Green Paper by the European 
Commission (COM, 1998, 1997). In the EU decision-making process Green Papers start a 
process of more or less formalized and open consultations leading ultimately to the draft of a 
directive. In our cases the directives were decided in the co-decision procedure in which the 
European Parliament and the Council both have to adopt a common text before the directive 
comes into effect (Peterson and Bomberg, 1999, 25).  

It took little over four years from the initial Green Paper to the Commission’s proposal for the 
IP enforcement directive and another 15 months to reach a final decision. In the case of soft-
ware patents it took only a little longer – four and a half years – from the Green Paper to the 
proposal, but another three and a half years until the proposal was finally rejected. While we 
witness a heated debate about the pros and cons of software patens – an issue that seemed 
from the outset much less controversial – we see a relatively smooth and undisturbed legisla-
tive process in the case of the IP enforcement directive where one could have expected much 
more conflict as the directive touches upon issues like file-sharing that have received much 
more public attention than the arcane issue of software patents. 

In both cases, the Commission has argued in its proposals with a need to harmonize the inter-
nal European market and to comply with international treaties. Furthermore, it has claimed to 
strengthen the competitiveness of European industries in the world with its proposals. What 
the Commission did de facto was not just its aim to harmonize different national legal settings 
but to follow a course of augmentation of intellectual property rights. 

In both cases, the Commission received strong support by industry lobby groups that repre-
sented a number of powerful key players in the respective fields. But also in both cases, busi-
ness interests did not unanimously support the Commission’s proposals. Major firms from the 
European telecommunications industry opposed the IP enforcement directive and a large 
number of mostly SMEs opposed the software patents directive. Civil society and consumer 
interest groups have mobilized against the directives in both cases. In sum the actor constella-
tion for the two cases was as follows: 
 
 Software Patents IP Enforcement 
Pro  • Commission 

• BSA 
• EPO 
• Patent Lawyers 

• Commission 
• Music Industry 

Contra • FFII 
• NoSoftwarepatents-Campaign 
• some NGOs 

• Some large European telecommunica-
tions firms 

• Some NGOs 
• EDRi 

Undecided • Council (majority for patentability) 
• Parliament 
• SMEs 
• Scientific Experts 

• Council (majority for the directive) 
• Parliament (majority for the directive) 
• Scientific Experts 
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Data Collection 

Our aim was to collect as much information as possible on the actor networks that made up 
the two conflicts. Because we were interested in collective action networks, we focused 
mainly on collaboration links between actors. The problem we faced was that not all actors 
involved in the conflicts were willing to disclose information about their cooperation partners 
mainly for two reasons: 
1) even though both conflicts had come to a preliminary end, the underlying controversy 

about the future shape of a European IP regime was not resolved, 
2) for those actors involved in routine lobbying at the European level their cooperation rela-

tionships are their social capital which they would not want to disclose. 
We tried to mitigate this problem by using a triangulation approach, in which we combined 
data from multiple sourced into one unified data set. 

The data used in this network analysis comes from five main sources: 
1) One part of the research project was a political claims analysis of the newspaper articles 

that mentioned one or both of the conflicts. Here we analyzed all articles published in 
mayor quality newspapers between 1997 and 2005 in Germany, France, Great Britain and 
Poland (Haunss and Kohlmorgen, 2008). From this data we compiled a list of actors in-
volved in the conflict and also extracted some information about cooperation networks that 
were mentioned in the press. 

2) We then interviewed 22 core actors from both conflicts and asked them about their coop-
eration networks and about other actors involved in the conflicts. 

3) Combining information from both sources we constructed an online questionnaire,1 which 
we asked all actors that had been identified so far to complete. Unfortunately, the response 
rate was disappointing. Only 60 individuals and/or organizations completed the question-
naire. 

4) We analyzed two online news sources that had in depth coverage of the conflicts 
(http://www.heise.de & http://www.slashdot.org). 

5) We systematically collected and analyzed all documents available on the Internet that were 
published by actors involved in the conflicts and extracted information about cooperation 
relationships from these documents. Specifically, we collected data on the membership 
networks of the central organizations involved in the conflict. 

6) And we also extracted some information about network relationships from a number of 
other publications (Müller, 2006; Webber and Gehlen, 2006). 

In the resulting network data set, we also coded a number of attributes for each actor: 
– Position in the conflict (supporting the directive, opposition, neutral/unknown), 
– Organizational form (individual, firm, organization/association, institution), 
– Sub-network membership (political party, membership in one of the relevant business as-

sociations, participation in one of the relevant ad-hoc networks). 
                                                 
1 http://www.ipgovernance.eu/questionnaire/questionnaire.html  
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For the analysis in this paper, we then simplified the data in the following way. Individuals 
who were members of one of the relevant membership organizations were reduced to this or-
ganizations (their vertices were deleted from the dataset and their relationships were added to 
the respective organization), MEPs were reduced to their respective political parties, and the 
Commissioners as well as the staff members of the Commission were reduced to the actor 
“Commission.” 

The final dataset that was derived this way now consists of firms, organizations, institutions 
and of individuals without or with unknown affiliation. If multiple sources mentions collabo-
rative relations between the same actors in different circumstances, this is reflected in the 
value assigned to the respective link, which reflects the strength of the cooperation.  

The Two Actor Networks 

Using this data, we were able to reconstruct the two distinctive actor networks of the two IP 
conflicts: (i) the IPRED network that developed in the conflict about the first EU directive on 
the enforcement of intellectual property rights, and (ii) the SWPAT network that developed in 
the conflict about the EU directive on the patentability of computer-implemented inventions. 
In each one of these two policy processes, a distinctive set of actors was involved in develop-
ing a certain pattern of relations and collaboration, and possessing a certain profile of posi-
tions with respect to the contested field of intellectual property relevant for the two EU direc-
tives. 

These two actor networks are 1-mode social networks generated by two distinct patterns of 
collaborative relations among actors in each of them. Collaboration is considered here to be a 
nondirectional valued relation. Nondirectional means that it is reciprocated among collaborat-
ing actors – resulting in a symmetrical adjacency matrix (sociomatrix) and a pattern of undi-
rected lines among vertices in the corresponding graph. Being valued means that for each pair 
of collaborating actors a numerical value is assigned to their link (line) that signifies the num-
ber of distinctive collaborations sustained by the pair of actors – with the result that the entries 
of the adjacency matrix have positive integer values representing the strength or intensity of 
the collaboration. 
 



 5 

 
Figure 1: The IPRED network. 

 

 
Figure 2: The SWPAT network. 

 
Above we have drawn the two actor networks using the Pajek program for large network 
analysis. For obvious reasons, we have omitted actor labels and line values (using instead dif-
ferent line widths, proportional to actual line values). 

In the IPRED network, there are 289 actors and 424 distinct dyads of collaborating actors. 
Each dyad of actors may sustain multiple collaborations – here up to a maximum of 10 (which 
is the value of the link between FFII and Greens EFA). Summing them up all, we find a total 
number of 848 dyadic collaborations. Similarly, in the SWPAT network, there are 691 actors 
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forming 1,004 distinct dyads of multiple collaborations, where now the maximum number of 
collaborations in a dyad is 31 (which is the value of the link of internal collaboration in 
ALDE) and the total sum of collaborations over all dyads is 2,013. Figure 3 displays the dis-
tribution of the number of collaborations over dyads of actors in the two networks. Since the 
density of a valued network should be computed over the net number of collaborating dyads – 
counted once as far as a dyad might sustain at least one collaboration (this is the correspond-
ing dichotomous relation) – the density of the IPRED network is found equal to 0.0102 and 
the density of the SWPAT network equal to 0.0042. Obviously, the SWPAT network is much 
sparser than the IPRED network. 
 

 
Fig. 3: Distributions of line values 

 
Figure 4 shows, that the distribution of degrees in both networks is extremely skewed. There 
are no isolates. In the IPRED network 216 actors (74.74% of all actors) have the degree 1 
(i.e., they have only one collaboration with another actor) and there is a single actor (0.34%) 
having the maximum degree of 72 – the BSA. In the SWPAT network, there are 588 actors 
(85.09% of all actors) with degree 1 and there is a single actor (0.14%) having the maximum 
degree of 293 – the EuroLinux coalition. 
 

  
Figure 4: Degree distributions in the IPRED and the SWPAT network. 
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In both networks, actors are of one of the following four types: (i) individuals, (ii) members 
of the European Parliament (MEP) or a European Party, (iii) firms and (iv) organizations or 
institutions or associations. The following table gives the distribution of actor types: 
 

  IPRED SWPAT 
    %   % 
Firms [3] 122 42.21 533 77.13 
Individuals [1] 1 0.35 9 1.30 
MEP/Parties [2] 6 2.08 8 1.16 
Organizations [4] 160 55.36 141 20.41 
Total 289 100.00 691 100.00 

Table 1: Distribution of actor types [codes]. 
 
As one can see, although the majority of actors in the IPRED network consists of organiza-
tions (55.36%), the majority in the SWPAT network is firms (77.13%). 

Finally, as we have mentioned above, actors may take the following positions with respect to 
the context of the corresponding EU directive: (i) pro, (ii) neutral and (iii) contra. The follow-
ing table gives the distribution of actor positions: 
 

  IPRED SWPAT 
    %   % 
Pro [1] 107 37.02 214 30.97 
Neutral [0] 45 15.57 70 10.13 
Contra [-1] 137 47.40 407 58.90 
Total 289 100.00 691 100.00 

Table 2: Distribution of actor positions [codes]. 
 
The majority of actors in the SWPAT network is against the EU directive, while the percent-
age of supporters of the directive is higher in the IPRED than in the SWPAT network (al-
though minoritarian in both). 

The following four visualizations are displaying graphically the distribution of actor types and 
actor positions on the graphs of the two dichotomous networks.  
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Figure 5: The dichotomous IPRED network partitioned over 

Left: actor types, where firms are blue, organizations green, MEP/Parties yellow 
and individual(s) red 

Right: actor positions, where contra is red, neutral green and pro blue. 
 

 
Figure 6: The dichotomous SWPAT network partitioned  

Left: over actor types, where firms are blue, organizations green, MEP/Parties yel-
low and individuals red. 

Right: over actor positions, where contra is red, neutral green and pro blue. 

Structural Properties of Actors 

Now, we are going to discuss a series of certain structural indicators, which may characterize 
how actors are embedded in their corresponding networks. Moreover, since these indicators 
take numerical values, it is possible to compare them and also examine whether they correlate 
with each other. Thus, the general idea is to determine certain structural properties that actors 
acquire through their interdependence with other actors in the network where they coexist and 
relate to each other through their actions of collaboration on the basis of their participation in 
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the two policy processes around intellectual property issues. For this purpose, after giving a 
short presentation of the meaning of these structural properties, we will display the corre-
sponding structural indicators and comment upon any interesting features we might observe. 

The first actor property that we are going to examine is about the “size” of actors in our net-
work data. But how can we measure “size” in a set of actors, who are heterogeneous ranging 
from individual to collective actors? One possibility would be to consider a “membership 
size” of actors. This measurement would create a big problem: all individual actors would 
possess a low “respondents’ size” (equal to 1), although their contribution and embeddedness 
in the network might be quite important. This is why, instead of the previous “respondents’ 
size,” we prefer to use a notion of an actor’s “relational size,” which is defined by the number 
of distinct collaborations that all respondents belonging to or affiliated with that actor are re-
porting that they have developed with other actors in the network. We call “relational rate” or 
simply “rate” of an actor the ratio of the number of distinct collaborations of that actor di-
vided by the total number of all collaborations in the survey.  

Computing rates in this relational sense yields four organizations on top (CODE, BSA, IFPI, 
EDRi and the European Commission), while a large number of organizations are at the bot-
tom of this ranking. However, we also obtain a very interesting result. Although the mean 
rates in both networks are almost 0, the distribution of rates of MEP/Parties appears to be 
more concentrated than in any other type of actors, as it is shown in the following two box-
plots. 
 

 
Figure 7: Boxplots of rates for actor types in the IPRED network (left) and of rates for actor 

types in the SWPAT network (right). 
 
The boxplots in Figure 7 show that individuals, firms and organizations all show a similar 
pattern of cooperation that is: in general a very low level of cooperation. Only a small number 
of firms, individuals and organizations (the outliers) have higher cooperation values. These 
are the important actors in the conflict. 

The political parties show a different pattern of cooperation, which is more homogenous. This 
is the result of their structurally similar position in the conflict. The political parties were the 



 10 

main addressees of lobbying and the political mobilizations. They had to cooperate with a 
number of actors and do this at similar rates. The comparatively small size of the 50% box 
that – in contrast to the other actor types is not zero – reflects this similar behavior, and at the 
same time reflects the different role the parties played in the conflicts, depending on their size 
and the function of certain MEPs in the relevant committees. 

To qualify these findings we have computed two more relational indicators based on the pat-
tern of collaborations that an actor might sustain. To define them, we first need to observe 
whether an actor’s collaborations is internal (i.e., collaborations among respondents belonging 
to or affiliated with the same actor) or external (i.e., collaborations among respondents in dif-
ferent actors). Then, following Cornwell & Harrison (2004), we define the two indicators as 
follows: An indicator called “This/Other” is defined as the ratio of an actor’s external collabo-
rations divided by the total sum of all external collaborations in the survey. And an indicator 
called “Other/This” is defined as the ratio of an actor’s external collaborations divided by the 
sum of all (internal and external) collaborations of that actor.  

Ranking the indicator This/Other in descending order, we find an organization at the top, 
CODE, followed by the party EPP-ED, and then by four other organizations (European 
Commission, Anti-Piracy Coalition, FFII and EDRi), while at the very end we see a number 
of firms and the organization ETNO being at the very last position in this ranking. Similarly, 
the five top actors in the Other/This ranking are organizations (FIAPF, EFCA, ENPA, FEP 
and FERA/AIDAA), while again a number of Firms are at the bottom. It is still interesting, 
that again, for these two relational indicators, the actor type of MEP/Parties exhibits an inter-
esting distribution, as we can see in the following two figures (for the Other/This indicator). 
 

 
Figure 8: Boxplots of “other/this” for actor types in the IPRED network (left) and of 

“other/this” for actor types in the SWPAT network (right). 
 
The Other/This boxplots (Figure 8) provide a differentiation of the findings illustrated in Fig-
ure 7: For the political parties we see a dominant pattern of outward-oriented cooperation in 
the IPRED case, but see a differentiation between inward and outward oriented cooperation in 
the SWPAT conflict. Due to the generally very low level of interaction of individuals and 
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firms most actors again have a value of (almost) zero. The cluster of outliers of firms in the 
SWPAT network reflects the fact that those firms that played an active role in the conflict in-
teracted mostly with individuals MEPs and organizations and not so much with other firms. 
This makes perfect sense as they tried to influence not primarily other firms but the relevant 
decision-makers in Europe. Organizations, on the other hand, show in both conflicts a strong 
tendency to interact predominantly with other organizations and institutions. This pattern re-
flects two aspects of the conflicts: First, the attempts of the business organizations and other 
collective actors to influence the commission, which was coded with the value 4 (organiza-
tion/institution) in our data set. Second, this is an expression of the Brussels lobbying envi-
ronment where interest groups mainly interact with each other and the European institutions 
an in which the European Parliament has not yet found a fixed place. In both our conflicts the 
established associations relied primarily on their established contacts with the commission 
and only relatively late realized the importance of the EP. 

To complete the picture, we have also computed the four standard indicators of network cen-
trality: degree centrality, betweenness centrality, closeness centrality and Bonacich power in-
dex (Wasserman & Faust, 1994). Let us note that the computation of the first three centrality 
indicators was necessarily done over the corresponding dichotomous networks. In all cases, 
these computations were implemented with the help of the sna package (Butts, 2007). 
 

IPRED  

  Mean Standard Deviation Maximum Minimum 

Rates 0 0.01 0.08 0 

This/Other 0 0.01 0.1 0 

Other/This 0.14 0.31 1 0 

Degree Centrality 5.87 15.27 144 2 

Betweenness Centrality 363.46 1723.93 16427.39 0 

Closeness Centrality 0.29 0.04 0.42 0.18 

Bonacich Power Index -0.08 1 5.79 -2.84 

 
SWPAT  

  Mean Standard Deviation Maximum Minimum 

Rates 0 0.01 0.11 0 

This/Other 0 0.01 0.09 0 

Other/This 0.08 0.24 1 0 

Degree Centrality 5.81 27.79 586 2 

Betweenness Centrality 873.98 7926.34 154727.63 0 

Closeness Centrality 0.28 0.03 0.46 0.2 

Bonacich Power Index -0.67 0.75 7.74 -6.18 

Table 3: Statistics of the seven relational indicators. 
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In the ranking of degree, betweenness and closeness centralities, we obtain a similar pattern as 
with rates: the same two organizations are always at the top (BSA and IFPI), while there are 
both organizations and firms at the end in all three cases. Furthermore, in the ranking of 
Bonacich power index, we still see two organizations at the top (IFPM and European Com-
mission), while organizations and firms are still at the very end of this ranking. Finally the 
following two tables display correlations among all seven relational indicators for the two 
networks. 

Cor re l a t i ons

1 ,824** ,320** ,932** ,884** ,614** ,050

,000 ,000 ,000 ,000 ,000 ,399
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Centrality

Betweennes
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Centrality
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Correlation is significant at the 0.01 level (2-tailed).**.  
Table 4: Pearson Correlations for the IPRED indicators. 
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Correlation is significant at the 0.01 level (2-tailed).**.  
Table 5: Pearson Correlations for the SWPAT indicators. 

 

An Exponential Random Graph Model 

In recent years, there has been a growing interest in exponential random graph models 
(ERGMs), which are often also referred as p* models (Holland and Leinhardt, 1981; Frank 
and Strauss, 1986; Wasserman and Pattison, 1996; Robins, Pattison, Kalish, and Lusher, 
2007). In a nutshell, the purpose of ERGMs is to describe the local relational forces that shape 
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the global structure of a network. To this end, a network data set, like the IPRED or the 
SWPAT data set that we are studying here, is considered as the outcome of an unknown sto-
chastic process or, better said, as a regression model, where the predictors are things like 
“propensity for actors to form dyadic links,” or “propensity of actors of the same type or of 
the same positions to collaborate with each other” – in fact, these are the two hypotheses that 
we are going to test here for our networks.  

To be able to give a few more technical details of how ERGMs work, let us denote by Y the 
adjacency matrix of a dichotomous network (Yij = 1, if an edge exists between actors i and j, 
and Yij = 0, otherwise). Implicit here is the fact that ERGMs, at the moment, work only for 
dichotomous nonreflexive relations (not necessarily nondirectional). Therefore, to apply them 
in our two case, we reduce our networks to their corresponding dichotomous networks – es-
sentially by reducing to 1 all nonzero values of relations among actors and getting rid of all 
self-links (the internal collaborations of actors). 

The general goal of ERGMs is to produce probabilistic models of Y based on the observed 
network data sets, since the complexity of the studied phenomena does not permit us to know 
the exact form of any possible stochastic process that might govern the evolution of the net-
work. Let us denote byY  the set of all possible obtainable networks (with dichotomous non-
reflexive relations on a fixed set of actors). In other words, Y  is the support of Y and the 
network that we observe in reality is a single member of Y  that we denote by y. Of course, 
the whole setY cannot be known in reality, but what ERGMs manages to do is to representY 
through simulations in a large pool of (artificial) networks and to use these simulated net-
works in order to conduct statistical fits, inferences and tests of hypotheses about the domi-
nant structural features of the observed (real) network y.  

Furthermore, usually, beyond the network information contained in Y, there are some more 
additional data, such as a set of measured attributes or characteristics for each actor in the 
network (in our case, actor types and actor positions are such given attributes). So, let us de-
note by X the matrix of all actor attributes that we happen to know. 

Using this notation, the fundamental assumption in ERGMs (because of which the name “ex-
ponential random graph” is given) is that the probability of observing a particular network y is 
an exponential function of statistics that may depend on the observed network itself as well as 
on the attributes X of its actors. In a mathematical formula, this assumption is generally ex-
pressed as: 

Pθ (Y = y | X) = (κ(θ))–1 exp{∑ θk gk (y,X)}, y œ Y, 

where g(y,X) is a vector of statistics derived from the observed network y and from the ob-
served attributes X and the vector θ denotes the statistical parameters governing the probabil-
istic formation of the network. The denominator κ(θ) is a normalizing constant that ensures 
that the above expression defines a probability (i.e., the sum over all possible y equals 1). 
Moreover, we need to say that in the above formula we have suppressed the dependence of 
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the probability Pθ (Y = y | X) on Y  and we need also to add that the support set Y  should be 
specified in such a way that all its elements might share the same structural and attributional 
characteristics with the particular distribution of the observed attributes X on the observed 
network y. 

Equivalently, the above assumption can be formulated in terms of the log-odds that any given 
edge (collaboration, in our case) will exist given the observed network y and the attributes X 
of its actors: 

logit (Yij = 1) = ∑ θk δk
ij

 [g,y,X], 

where Yij = 1 signifies the occurrence of an actor pair in Y and δij
 [g,y,X] is the change in 

g(y,X), when the value of yij is toggled from 0 to 1. 

Now, applying this statistical methodology to our network data, we are going to consider an 
ERGM model that includes the edge (collaborations) count L(y) (on the observed network y) 
along with the count of matched actor types Stypes(y,X) and matched actor positions Sposi-

tions(y,X) on dyads of linked (collaborating) actors (according to the observed attributes X):  

Pθ,ζ,η (Y = y | X) = (κ(θ,ζ,η))–1 exp{θ L(y) + ζ Stypes(y,X) + η Spositions(y,X)}, 

where θ, ζ and η are the statistical parameters of the model. Apparently, we might say that the 
aim of this model is to estimate statistically the overall effect of the number of edges (collabo-
rations) together with two types of homophily/heterophily effects, one in actor types and an-
other one in actor positions. The model fit was implemented with the package statnet (Hand-
cock et al., 2003), which is based on the R statistical environment (R Development Core 
Team, 2007). The outcomes of the model fit are given in the following table: 
 

  IPRED network SWPAT network 
Parameters Estimate Standard Error Estimate Standard Error 

Edges-collaboration (θ) -5.529 0.107*** -5.939 0.075*** 
Homophily in actor types (ζ) 0.297 0.099 ** -1.916 0.072*** 
Homophily in actor positions (η) 1.436 0.109*** 2.050 0.083*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Table 6: ERGM parameter estimates for the IPRED and the SWPAT networks. 

 
To interpret the above estimated coefficients, first we get (Goodreau et al., 2008): 
 θ = log-odds of completely heterogeneous (heterophilic) edges/collaborations (both in ac-

tor types and positions), 
 θ1 = θ + ζ = log-odds of partially homogeneous (homophilic) edges/collaborations only in 

actor types, 
 θ2 = θ + η = log-odds of partially homogeneous (homophilic) edges/collaborations only in 

actor positions,  
 θ3 = θ + ζ + η = log-odds of completely homogeneous (homophilic) edges/collaborations 

(in either actor types or positions). 
 



 15 

Next, we derive the probabilities corresponding to these log-odds according to the formula: 

probability = (exp(log-odds)) / (1 + exp(log-odds)), 

in order to get the following probabilities: 
 

IPRED  
network 

SWPAT  
network 

  Probability Probability 
Completely heterogeneous (heterophilic) edges/collaborations 0.0040 0.0026 
Homogeneous (homophilic) edges/collaborations in actor types 0.0053 0.0004 
Homogeneous (homophilic) edges/collaborations in actor positions 0.0164 0.0201 
Completely homogeneous (homophilic) edges/collaborations  0.0220 0.0030 
Table 7: ERGM computed probabilities of various types of homophilic or heterophilic 

edges/collaborations in the IPRED and SWPAT Networks. 

From the above table, we see that, according to the ERGM fits, in the dynamics of the IPRED 
network, the most probable outcome is complete homophily and the least probable outcome is 
complete heterophily. On the other hand, in the SWPAT network, the most probable outcome 
is partial homophily in actor positions and the least probable outcome is partial homophily in 
actor types.  

These results reflect an important structural difference of both actor networks. In the IPRED 
conflict the main actors were business associations and civil society organizations. Only a 
small number of mostly large single firms tried to influence the decision-making process –
 without much success. The civil society actors were not able to mobilize a diverse constitu-
ency and mostly formed coalitions with other civil society organizations. The proponents of 
the directive relied strongly on their well-established contacts with the Commission, making 
their interest heard already in the drafting phase of the directive. The dominant pattern there-
fore was cooperation among organizations. In the European Parliament the decision-making 
process was relatively smooth. Differences between the three larges parties EPP-ED, PSE, 
and ALDE were mostly eliminated before the first reading in informal meetings. The domi-
nant pattern here, again, is cooperation among the parties. 

In the software patents conflict the picture was quite different. The actor network has a large 
periphery where the dominant pattern was cooperation between firms and organizations. But 
in the core of the network, where most interaction took place, the dominant pattern was inter-
action between different types of actors, especially between organizations, firms and 
MEPs/political parties. The factor that decides here about cooperation was not so much the 
organizational characteristics of the actor, but its centrality in the conflict. The result also re-
flects the relative autonomy of the various interest groups involved in the conflict. The oppo-
nent of software patents formed a number of independent mobilization networks that cooper-
ated mostly though individuals and firms but usually not directly. On the side of the support-
ers of the directive, two business organizations, BSA and EICTA, both mobilized for the di-
rective but again did only cooperate indirectly though firms that were members of both orga-
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nizations. Their latent concurrence about which of the two would be the real representative of 
the IT industry did not promote close and direct cooperation. 

Conclusions 

In this exploratory paper, we have analyzed the structural aspects of the networks of interac-
tion that had developed during two policy conflicts about intellectual property rights in 
Europe. We were interested not so much on the concrete interaction of different actors and in 
the role single actors have played in these conflicts, but in the structural characteristics of the 
two collective action networks. 

Our first approach, using statistical indicators, reveals that in both networks we can see dis-
tinct patterns of collaboration depending on the actor type. Individuals, firms, organizations, 
and political parties show different dominant patterns of interaction that exhibit some continu-
ity over the conflicts. This supports the notion that certain attributes of an actor shape its role 
and pattern of interaction in a political conflict. But our analysis also suggests that actors with 
certain attributes have certain corridor of possibilities, in which not only single actors can 
vary their patterns of interaction, but which is itself structured by the overall setup of the con-
flict. 

Using exponential random graph models our results show that these general structural charac-
teristics of the two conflicts exhibit significant differences. The IPRED conflict was much 
more a traditional lobbying conflict, in which organizational actors occupied the central posi-
tions and dominated the interaction. In the SWPAT conflict, our analysis points to predomi-
nantly heterogeneous patterns of interaction, that characterize political conflicts in which 
various types of actors interact on multiple levels, and in which the relative centrality of an 
actor in the collective action network is more important as a predictor of interaction than its 
attributes. 
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